The Loewner driving function of trajectory arcs of quadratic differentials

نویسنده

  • Jonathan Tsai
چکیده

Normalized in this way ft is unique and is said to be hydrodynamically normalized. The function C(t) is positive and strictly increasing: it is called the half-plane capacity of γ((0, t]), denoted by cap H (γ((0, t]). Thus we can reparameterize γ such that C(t) = 2t for all t, we will call this parameterization by half-plane capacity. With this normalization and parameterization, the function ft satisfies the differential equation ∂ft ∂t = − 2f ′ t(z) z − ξ(t) (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Differentials and Foliations

This paper concerns the interplay between the complex structure of a Riemann surface and the essentially Euclidean geometry induced by a quadratic differential. One aspect of this geometry is the " trajectory structure" of a quadratic differential which has long played a central role in Teichmfiller theory starting with Teichmiiller's proof of the existence and uniqueness of extremal maps. Ahlf...

متن کامل

Numerical computations for the Schramm-Loewner Evolution

We review two numerical methods related to the Schramm-Loewner evolution (SLE). The first simulates SLE itself. More generally, it finds the curve in the half-plane that results from the Loewner equation for a given driving function. The second method can be thought of as the inverse problem. Given a simple curve in the half-plane it computes the driving function in the Loewner equation. This a...

متن کامل

Trajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming

This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...

متن کامل

Stochastic Loewner evolution in multiply connected domains Evolution stochastique de Loewner dans des domaines multiple connexes

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated Teichmüller space. The diffusion stops when it reaches the boundary of the Teichmüller space. We show that for this driving function the family of random growi...

متن کامل

Stochastic Loewner evolution in multiply connected domains

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007